class: center, middle, inverse, title-slide .title[ # Definite Integral ] .subtitle[ ## Session 02 ] .author[ ### Alejandro Ucan ] .date[ ### 2023-10-29 ] --- # Goals: * Prove that Riemann sums approximate the area under the curve. <br/><br/> * Define the definite integral. <br/><br/> * Compute definite integrals using the definition. <br/><br/> * State the Foundamental Theorem of Calculus. <br/><br/> --- # Recall Riemann sums --- # Definite Integral > __Definition:__ Let `\(f\)` be a function defined on the interval `\([a,b]\)`. The definite integral of `\(f\)` from `\(a\)` to `\(b\)` is defined as the limit of a Riemann sum when we increase the number of subintervals in a partition. In symbols `$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x_i$$` provided that this limit exists and gives the same value for all possible choices of sample points `\(x_i^*\)` in the subintervals `\([x_{i-1}, x_i]\)`. --- ## Some conventions: * We will only use regular partitions but the definition is valid for any kind of partition. <br/><br/> * We will only consider left Riemann sums, but this computation is also valid for right and middle sums. <br/><br/> * We will use the notation `\(\Delta x = \frac{b-a}{n}\)` and `\(x_i = a + i \Delta x\)`. --- #### Example 1: 1. Compute the definite integral `\(\int_0^1 x dx\)` using the definition. <br/><br/> -- Let's start by computing the Riemann sum for `\(n\)` subintervals. The length of the subintervals is given by `\(\Delta x= \frac{1-0}{n}\)` and the left points are `$$x_j=0 + j \Delta x = \frac{j}{n}$$` for `\(j=0,1,2,\ldots,n\)`. The Riemann sum is given by `$$\sum_{j=1}^n f(x_j) \Delta x = \sum_{j=1}^n \frac{j}{n} \frac{1}{n} = \frac{1}{n^2} \sum_{j=1}^n j = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}$$` <br/><br/> Let's take the limit in the number of intervals: `$$\lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2}.$$` --- #### Example 2: 1. Compute the definite integral `\(\int_1^4 4x+3 dx\)` using the definition. <br/><br/> -- Let's start by computing the Riemann sum for `\(n\)` subintervals. The length of the subintervals is given by `\(\Delta x= \frac{1-{-1}}{n}\)` and the left points are `$$x_j=-1 + j \Delta x = -1 + \frac{j}{n}$$` for `\(j=0,1,2,\ldots,n\)`. The Riemann sum is given by `$$\sum_{j=1}^n f(x_j) \Delta x = \sum_{j=1}^n (4(-1 + \frac{j}{n})+3) \frac{2}{n} = \frac{2}{n} \sum_{j=1}^n (4(-1 + \frac{j}{n})+3) = \frac{2}{n} \sum_{j=1}^n (4-4\frac{j}{n}+3) = \frac{2}{n} \sum_{j=1}^n (7-4\frac{j}{n}) = \frac{2}{n} (7n-4\frac{n(n+1)}{2}) = 7-2\frac{n+1}{n}$$` <br/><br/> Let's take the limit in the number of intervals: `$$\lim_{n \to \infty} 7-2\frac{n+1}{n} = 7-2 = 5.$$` --- #### Example 3: 1. Compute the definite integral `\(\int_0^1 x^2 dx\)` using the definition. <br/><br/> -- Let's start by computing the Riemann sum for `\(n\)` subintervals. The length of the subintervals is given by `\(\Delta x= \frac{1-0}{n}\)` and the left points are `$$x_j=0 + j \Delta x = \frac{j}{n}$$` for `\(j=0,1,2,\ldots,n\)`. The Riemann sum is given by `$$\sum_{j=1}^n f(x_j) \Delta x = \sum_{j=1}^n \frac{j^2}{n^2} \frac{1}{n} = \frac{1}{n^3} \sum_{j=1}^n j^2 = \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^2}$$` <br/><br/> Let's take the limit in the number of intervals: `$$\lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} = \frac{2}{3}.$$` --- # The Fundamental Theorem of Calculus > __Theorem:__ Let `\(f\)` be a continuous function on the interval `\([a,b]\)`. If `\(F\)` is any antiderivative of `\(f\)`, then `$$\int_a^b f(x) dx = F(b) - F(a).$$` #### Example 4: 1. Compute the definite integral `\(\int_0^1 x dx\)` using the Fundamental Theorem of Calculus. <br/><br/> The antiderivative of `\(x\)` is `\(\frac{x^2}{2}\)` and the definite integral is given by `$$\int_0^1 x dx = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2}.$$` --- #### Example 5: Compute the following definite integrals using the Fundamental Theorem of Calculus. 1. `\(\int_-1^4 4x+3 dx\)` <br/><br/> 1. `\(\int_0^1 x^2 dx\)` <br/><br/> 1. `\(\int_0^3 x^2-3x+5 dx\)` <br/><br/> 1. `\(\int_1^e \frac{1}{x} dx\)` <br/><br/>