class: center, middle, inverse, title-slide .title[ # Generalized Eigenvectors for repeated eigenvalues ] .subtitle[ ## Session 08 ] .author[ ### Alejandro Ucan ] .date[ ### 2023-10-29 ] ---
# Goals * Understand the concept of generalized eigenvectors. <br/><br/> * Understand the solution in the case of complex eigenvalues. <br/><br/> * Understand the phase plane. <br/><br/> --- # Generalized eigenvectors > Consider the system `$$X'= \left(\begin{array}{cc} 1 & 2 \\ -2 & -3 \end{array}\right) X.$$` We want to build a general solution. The characteristic polynomial is: `$$\lambda^2-2\lambda +1=0,$$` so the only eigenvalue is `\(\lambda=1.\)` Its eigenvector is `$$(A+I)=\left(\begin{array}{cc} 2 & 2 \\ -2 & -2 \end{array}\right)\Rightarrow 2v_1+2v_2=0\Rightarrow v_2=-v_1.$$` <br/> In this case, we say that the eigenvector is not enough to build a general solution. We need to find a second vector. In order to do this, we need to find `\(w\)` such that `$$(A-\lambda I)w=v.$$` --- ## Continuation example > Solve the system `$$X'= \left(\begin{array}{cc} 1 & 2 \\ -2 & -3 \end{array}\right) X.$$` <br/><br/> We have that `$$(A+I)w=v\Rightarrow \left(\begin{array}{cc} 2 & 2 \\ -2 & -2 \end{array}\right) \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) =\left(\begin{array}{c} 1 \\ -1 \end{array}\right),$$` which reduces to the equation `$$2w_1+2w_2=1\Leftrightarrow 2w_1=1+2w_2.$$` We can take the value `\(w_2=0,\)` and my other vector would be `$$\left(\begin{array}{c} 1/2 \\ 0 \end{array}\right)$$` Thus my general solution is `$$X=c_1e^{-t}\left(\begin{array}{c} -1 \\ 1 \end{array}\right)+c_2te^{-t}\left(\begin{array}{c} 1/2 \\ 0 \end{array}\right).$$` --- ### Example 2: > Find the general solution for `$$X'=\left(\begin{array}{cc} 3 & -18 \\ 2 & -9 \end{array}\right)X.$$` --- # Complex Eigenvalues > Consider the system `$$X'= \left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right) X.$$` <br/><br/> Its characteristic polynomial is `$$\lambda^2-10\lambda+29=0\Rightarrow \lambda_1=5+2i\quad \lambda_2=5-2i.$$` <br/><br/> Its eigenvectors are `$$v_1=\left(\begin{array}{c} 1 \\ 1-2i \end{array}\right)\quad v_2=\left(\begin{array}{c} 1 \\ 1+2i \end{array}\right)$$` --- ## Rewriting the eigenvectors > As we want real functions, we need to rewrite the eigenvectors in order to get real functions. <br/><br/> Let `$$w_1=\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \quad w_2=\left(\begin{array}{c} 0 \\ -2 \end{array}\right)$$` Thus my general solution is `$$X=c_1e^{(5+2i)t}\left(\begin{array}{c} 1 \\ 1-2i \end{array}\right)+c_2e^{(5-2i)t}\left(\begin{array}{c} 1 \\ 1+2i \end{array}\right).$$` --- ### Example 3: > Find the general solution for `$$X'=\left(\begin{array}{cc} -1 & 2 \\ -1 & 1 \end{array}\right)X.$$` --- # Phase Plane <iframe src="https://www.geogebra.org/calculator/xnzc4b6w?embed" width="1200" height="450" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe>