class: center, middle, inverse, title-slide .title[ # Applied Laplace Transform ] .subtitle[ ## Session 10 ] .author[ ### Alejandro Ucan ] .date[ ### 2023-11-05 ] ---
# Goals * Introduce the inverse of a Laplace transform. <br/><br/> * Introduce the relationship between the Laplace transform and the derivative of a function. <br/><br/> * Solve initial value problems using Laplace transforms. <br/><br/> --- # Most commun Laplace transforms: The next list has the Laplace transforms for the most commun functions * `\(\mathcal{L}\left\{t^n\right\}=\frac{n!}{s^{n+1}}\)` * `\(\mathcal{L}\left\{e^{at}\right\}=\frac{1}{s-a}\)` * `\(\mathcal{L}\left\{\sin(kt)\right\}=\frac{k}{s^2+k^2}\)` * `\(\mathcal{L}\left\{\cos(kt)\right\}=\frac{s}{s^2+k^2}\)` * `\(\mathcal{L}\left\{\sinh(kt)\right\}=\frac{k}{s^2-k^2}\)` * `\(\mathcal{L}\left\{\cos(kt)\right\}=\frac{s}{s^2-k^2}\)` --- # Inverse Laplace Transform > Suppose that we know the Laplace transform of an unknown function, how to determine the function that produces the Laplace transform? <br/><br/> > __Definition:__ The inverse Laplace transform of `\(F(s)\)` is the function `\(f(t)\)` such that `$$\mathcal{L}\{f(t)\}=F(s).$$` -- <br/><br/> * `\(F(s)=\frac{1}{s^5}\)` * `\(F(s)=\frac{1}{s^2+7}\)` * `\(F(s)=\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\)` --- # Laplace transform of a Derivative: > __Theorem:__ If `\(\mathcal{L}\{f(t)\}=F(s)\)` exists, then `$$\mathcal{L}\{f'(t)\}=sF(s)-f(0)$$` `$$\mathcal{L}\{f^(n)(t)\}=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots- f^{(n-1)}(0).$$` -- <br/><br/> ### Example: Find the solution of the initial value problem `\(y'+3y=13\sin(2t)\quad y(0)=6.\)` --- #### Solution: 1. We apply Laplace transform in both sides of the equation: `$$\mathcal{L}(y')+3\mathcal{L}(y)=\mathcal{13\sin(2t)}$$` 2. We use derivative theorem to express the transform of the derivative. `$$s^2 \mathcal{L}(y)-sy(0)=\frac{26}{s^2+4}$$` 3. We solve for `\(\mathcal{L}(y)\)` `$$(s^2-6s)\mathcal{L}(y)=\frac{26}{s^2+4}\Rightarrow \mathcal{L}(y)=\frac{26}{s(s-6)(s^2+4)}$$` --- #### Solution: 4. We use partial fractions to express `\(\mathcal{L}(y)\)` as a sum of simpler fractions `$$\mathcal{L}(y)=\frac{13 (3 s - 2)}{40 (s^2 + 4)} + \frac{13}{120 (s - 6)} - \frac{13}{12 s}$$` 5. Then we use the table of Laplace transforms to find the inverse transform. `$$y(t)=-\frac{13}{12}+\frac{13}{120}e^{6t}+\frac{13}{40}\left(3\cos(2t)-\frac{1}{2}\sin(2t)\right)$$` --- ### Example Find the solution of the following initial value problem `$$y''-3y'+2y=e^{-4t},\quad y(0)=1,\quad y'(0)=5.$$` --- ### Example Find the solution of the following initial value problem `$$2y'''+3y''-3y'-2y=e^{-t},\, y(0)=0,\,y'(0)=0,\,y''(0)=1.$$` ---