class: center, middle, inverse, title-slide .title[ # 1st Traslation Theorem ] .subtitle[ ## Session 11 ] .author[ ### Alejandro Ucan ] .date[ ### 2023-11-12 ] ---
# Goals * State 1st Traslation Theorem. <br/><br/> * Provide some examples on how to apply the theorem. <br/><br/> * Apply the theorem to solve ODEs. --- # Motivation: <br/><br/> > What is the Laplace transform of the function `\(f(t)=e^{5t}t.\)` -- <br/><br/> Following the definition of the Laplace transform, we have that: `$$\mathcal{L}\{e^{5t}t\}=\int_0^\infty e^{-st}e^{5t}t\,dt=\int_0^\infty te^{-(s-5)t}\,dt$$` `$$\lim_{a\to\infty} -\frac{te^{-(s-5)t}}{s-5}-\frac{e^{-(s-5)t}}{(s-5)^2}\bigg|_0^a=\frac{1}{(s-5)^2}.$$` --- # 1st Traslation Theorem > __Theorem:__ Let `\(f(t)\)` be a function such that `\(\mathcal{L}\{f(t)\}=F(s)\)` exists. Then `$$\mathcal{L}\{e^{at}f(t)\}=F(s-a).$$` <br/><br/> > __Some Implications:__ From now, every time we see a known function "shifted" by an exponential factor, this translates as a shift in `\(s\)` in the transform. --- ## Applying the Theorem: ### Example (Direct Calculation): > Compute the Laplace Transform of `\(f(t)=e^{5t}t^3,\)` `\(g(t)=e^{-2t}\cos(4t)\)` y `\(h(t)=e^{-2t}\)` if `\(t>1\)` and `\(h(t)=0\)` otherwise. -- <br/><br/> ##### Solution: 1. The shifted function of `\(f\)` is `\(t^3\)` and its transform is `\(\frac{3!}{s^4}.\)` Therefore the transform of `\(f\)` is `\(\frac{3!}{(s-5)^4}.\)` <br/> 2. The shifted function of `\(g\)` is `\(\cos(4t)\)` and its transform is `\(\frac{s}{s^2+4^2}.\)` Therefore the transform of `\(g\)` is `\(\frac{s+2}{(s+2)^2+4^2}.\)` <br/> 3. The shifted function of `\(h\)` is the unit step function and its transform is `\(\frac{e^s}{s}.\)` Therefore the transform of `\(h\)` is `\(e^{s+2}\frac{1}{s+2}.\)` <br/> --- ### Example (Inverse Calculation): > Find the inverse Laplace transform of: `\(\mathcal{L}^{-1}\left\{\frac{2s+5}{(s-3)^2}\right\}\)` -- <br/> ##### Solution: Let's find out the partial fractions: `\(\frac{2s+5}{(s-3)^2}=\frac{A}{(s-3)}+\frac{B}{(s-3)^2}=\frac{2}{s-3}+\frac{-1}{(s-3)^2}.\)` Now we notice that those are shifted functions, therefore we look for the corresponding transform and we multiply it by an exponential factor: `$$\mathcal{L}^{-1}\left\{\frac{2s+5}{(s-3)^2}\right\}=\mathcal{L}^{-1}\left\{\frac{2}{s-3}\right\}+\mathcal{L}^{-1}\left\{\frac{-1}{(s-3)^2}\right\}=2e^{3t}-te^{3t}.$$` --- ### Example (Inverse Calculation): > Find the inverse Laplace transform of: `\(\mathcal{L}^{-1}\left\{\frac{s+5}{s^2+4s+6}\right\}\)` -- <br/> ##### Solution: First we check if the denominator has real roots: `\(s^2+4s+6=0\implies s=\frac{-4\pm\sqrt{16-4(1)(6)}}{2}=-2\pm i.\)` Therefore the roots are complex and we need to complete the square: `$$s^2+4s+6=(s+2)^2+4.$$` Therefore the fraction is `$$\frac{s+5}{(s+2)^2+4}=\frac{(s+2)}{(s+2)^2+4}+\frac{3}{(s+2)^2+4}$$` We use the formulaes to find the inverse: `$$\mathcal{L}^{-1}\left\{\frac{(s+2)}{(s+2)^2+4}\right\}=e^{-2t}\cos(2t)\quad \mathcal{L}^{-1}\left\{\frac{3}{(s+2)^2+4}\right\}=\frac{3}{2}e^{-2t}\sin(2t).$$` --- ### Example (Solving IVP) > Find the solution of the IVP: `\(y''-6y'+9y=t^2e^{3t},\quad y(0)=2,\quad y'(0)=17.\)` -- <br/><br/> First we apply Laplace transform in both sides of the ODE. `$$s^2\mathcal{L}\{y\}-sy(0)-y'(0)-6s\mathcal{L}\{y\}+6y(0)+9\mathcal{L}\{y\}=\mathcal{L}\{t^2e^{3t}\}$$` `$$\implies (s^2-6s+9)\mathcal{L}\{y\}=2s+5+\frac{2}{(s-3)^3}$$` We simplify and check if the quadratic polynomial is factorizable: `$$\mathcal{L}\{y\}=\frac{2s+17}{(s-3)^3}+\frac{2}{(s-3)^3(s-3)^2}$$` We find the inverse Laplace transform. --- ### Example (Solving IVP) > Find the solution of the IVP: `$$y''+4y'+6y=e^{-t},\quad y(0)=0,\quad y'(0)=0.$$` -- <br/><br/> First we apply Laplace transform in both sides fo the ODE `$$s^2\mathcal{L}\{y\}-sy(0)-y'(0)+4s\mathcal{L}\{y\}-4y(0)+6\mathcal{L}\{y\}=\mathcal{L}\{e^{-t}\}$$` `$$\implies (s^2+4s+6)\mathcal{L}\{y\}=\frac{1}{s+1}$$` We use partial fractions: `$$\mathcal{L}\{y\}=\frac{1}{(s+1)(s^2+4s+6)}=\frac{1/3}{s-1}+\frac{s-1/3}{s^2+4s+6}$$` We construct the function using the inverse Laplace transform.