class: center, middle, inverse, title-slide .title[ # 2nd Traslation Theorem ] .subtitle[ ## Session 12 ] .author[ ### Alejandro Ucan ] .date[ ### 2023-11-12 ] ---
# Goals * Introduce the 2nd Traslation Theorem. <br/><br/> * Apply the 2nd Traslation Theorem in the calculation of Laplace Transforms. <br/><br/> * Apply the 2nd Traslation Theorem in the solution of ODEs. <br/><br/> --- # Requirements: <br/><br/> > The unit step function in `\(a\)` is denoted by `\(u_a(t)\)` and it is defined as `$$u_a(t)=\left\{\begin{array}{cc} 0, & 0\leq t < a \\ 1, t\geq a \end{array} \right.$$` <br/><br/> How does the unit step function affect our functions? <br/> Picture the graph of the functions `\(f(t)=e^{t-2} u_2(t),\, g(t)=e^{t-3} u_3(t),\, h(t)=e^{t-4} u_4(t).\)` <br/><br/> --- # 2nd Traslation Theorem > __Theorem:__ Let `\(f(t)\)` be a function such that `\(\mathcal{L}\{f(t)\}=F(s)\)` exists. Then `$$\mathcal{L}\{f(t-a)u_a(t)\}=e^{-as}F(s).$$` <br/><br/> > _Theorem Implications:_ Now every time we calculate the Laplace Transform of scalonated function, we can use the 2nd Traslation Theorem to obtain the result. <br/><br/> --- ## Applying the Theorem #### Example (Direct Computation): > Compute the Laplace Transform of `\(f(t)=e^{t-2}u_2(t)\)`, `\(\cos(t-\pi)u_{\pi}(t)\)` y `\((-3(t-3)^4+(t-3)^3)u_{3}(t).\)` -- <br/><br/> #### Solution > `$$\mathcal{L}\{e^{t-2}u_2(t)\}=\mathcal{L}\{e^{t-2}u_2(t-2)\}=e^{-2s}\mathcal{L}\{e^t\}=e^{-2s}\frac{1}{s-1}.$$` <br/><br/> --- #### Example (Direct Computation): > Compute the Inverse Laplace transform of `\(F(s)=\frac{1}{s-4}e^{-2s},\)` `\(F(s)=\frac{s}{s^2+9}e^{-\pi s/2}.\)` -- <br/><br/> #### Solution The Inverse laplace transform of the function without the exponential factor is `$$\mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\}=e^{4t}$$` since it has an exponential factor, we need to modify it with the unit step function: `$$\mathcal{L}^{-1}\left\{\frac{1}{s-4}e^{-2s}\right\}=e^{4(t-2)}u_2(t-2).$$` <br/><br/> --- ### Example (Computation with Partial Fractions) > Compute the inverse Laplace transform of `\(F(s)=\frac{e^{-s}}{s(s^2-4)}.\)` -- <br/> #### Solution 1. We need to do partial fraction in the fraction without the exponential factor. `$$\frac{1}{s(s-2)(s+2)}=\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s+2}$$` `$$=\frac{-1}{4 s} + \frac{1}{8 (s + 2)} + \frac{1}{8 (s - 2)}$$` <br/> Now, we use the 2nd traslation theorem to use express the inverse `$$f(t)=\frac{-1}{4}u_1(t)+\frac{1}{8}e^{2(t+1)}u_{1}(t)+\frac{1}{8}e^{-2(t+1)}u_1(t).$$` <br/><br/> --- ### Example (Solving ODEs): > Find the solution for `\(y'+y=f(t),\quad y(0)=0,\quad f(t)=\left\{\begin{array}{cc} 0, & 0\leq t < 1 \\ 5, & t\geq 1 \end{array}\right.\)` -- <br/> #### Solution: 1. First we need to express the function `\(f\)` as a unit step function: `\(f(t)=5u_1(t).\)` <br/><br/> 1. We need to find the Laplace Transform of the ODE. `$$\mathcal{L}\{y'\}+\mathcal{L}\{y\}=\mathcal{L}\{f(t)\}$$` `$$sY(s)-y(0)+Y(s)=\frac{5}{s}$$` `$$Y(s)=\frac{5e^{-s}}{s(s+1)}.$$` <br/> 1. Reduce, use partial fractions and take Inverse Laplace transform. --- ### Example (Solving ODEs): > Find the solution for `\(y'+y=f(t),\quad y(0)=5,\quad f(t)=\left\{\begin{array}{cc} 0, & 0\leq t <\pi \\ 3\cos(t-\pi), & t\geq \pi \end{array}\right.\)` +-- <br/> #### Solution: 1. First we need to express the function `\(f\)` as a unit step function: `\(f(t)=3\cos(t-\pi)u_\pi(t).\)` <br/><br/> 1. We need to find the Laplace Transform of the ODE. `$$\mathcal{L}\{y'\}+\mathcal{L}\{y\}=\mathcal{L}\{f(t)\}$$` `$$sY(s)-y(0)+Y(s)=\frac{3se^{-\pi s}}{s^2+1}$$` `$$Y(s)=\frac{3e^{-s}}{s(s+1)}+\frac{5}{s^2+1}.$$` <br/> 1. Reduce, use partial fractions and take Inverse Laplace transform.